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In this paper we describe a new approach to implemen&tfig) fast multipole
method andD (N log N) tree method, which uses pseudoparticles to express the po-
tential field. The new method is similar to Anderson’s method, which uses the values
of potential at discrete points to represent the potential field. However, for the same
expansion order the new method is more accuratei999 Academic Press

1. INTRODUCTION

The tree algorithms [2, 3] are now widely used in the astrophysical community. For
trophysical simulations, the tree algorithms are particularly suitable because of the ada
nature of the algorithm.

However, the use of tree algorithms in astrophysics has been limited to problems:
relatively short timescales, such as collisions of two galaxies or large scale structure
mation of the universe. This is mainly because of the high calculation cost associated
high-accuracy calculation. Existing implementations of the Barnes—Hut treecode use
up to quadrupole moment. Therefore the calculation cost rises rather quickly when |
accuracy is required.

As in the case of the fast multipole method (FMM) [6], it is possible to implement high
order multipole expansion to achieve high accuracy. However, the translation formulas
multipole expansion are rather complex and difficult to program.

In this paper, we describe a new method of implementing FMM or the tree mett
with high order multipole expansion. The basic idea is extremely simple. In the multip
expansion, we approximate the potential field generated by a clump of particles by multi
expansion. We approximate the potential field back again by a distribution of particles.
approximation offers many advantages over traditional FMM which uses the coefficient
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multipole expansion themselves. In this paper we describe the basic idea and formul
two and three dimensions and discuss the relation between the proposed method, trad
FMM, and Anderson’s method [1] which is closely related to the the proposed method

This paper is organized as follows. In Section 2, the basic structure of the tree algor
and FMM are summarized. In Section 3, the mathematics of the new method is present
two and three dimensions. In Section 4, the result of some numerical tests for the trunc
error is presented. Section 5 is for discussions and Section 6 sums up.

2. TREE ALGORITHM AND FMM

2.1. The Tree Algorithm

The basic idea of the tree algorithm is to replace the gravitational forces from dis
particles with the force from their center of mass, or with multipole expansion if hi
accuracy is desired. Particles are organized into an octree structure, with the root
covering the entire system and leaves corresponding to each particles.

The force on a particle from a node is defined (and calculated) recursively. If the n
and particle are well separated (in terms of the error of the multipole expansion), the f
from the node to the particle is calculated by evaluating the multipole expansion of the r
at the location of the patrticle. If they are not well separated, the force is evaluated as the
of the forces from children of the node. The calculation cost of the force on one patrticl
O(log N), since the cost is proportional to the number of levels of the tree.

In order to use the multipole expansions of the nodes, they must be precomputed.
expansion coefficients for a node can be recursively calculated from those of children nc
The calculation cost of this part 3(N).

For details of implementation, see [13]. Salnedral. [15] describes the implementation
of the tree algorithm on distributed-memory parallel computers.

2.2. Fast Multipole Method

In the tree algorithm, the particles which generate the gravitational potential and
particles which feel the potential are not symmetric. The particles which generate pote
are treated as clumps whenever possible. However, calculations of the forces on two pat
are totally independent, even though the two particles are in small distance.

The basic idea of FMM (fast multipole method [6, 7]) is to locally expand the potent
field and use that expansion to obtain the forces on multiple particles. Figure 1 show:
relation between the tree algorithm and FMM.

Since neighboring particles share the same expansion, the scaling of the calculatior
changes fromO (N log N) of the tree algorithm t@(N). However, for similar accuracy,
the actual calculation cost of FMM is significantly higher than that of the tree algorith
even for very large number of particles. [4]

The fundamental reason for the relatively high cost of FMM is that the scaling w
the order of the expansion is different. In three dimensions, the calculation cost of
tree algorithm iSO (p?), wherep is the order of the multipole expansion. The number c
independent terms of the spherical harmonics of opderp?. Since the evaluation of terms
can be done using recurrent relation, the calculation cost is proportional to the numb
terms. On the other hand, the calculation cost of FMNDig*), since the translation of
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FIG. 1. Approximations in tree (top) and FMM (bottom).

the multipole expansion to the local expansion requires the calculation cost proportion
the square of the number of terms.

Of course, it is possible to reduce i p*) scaling toO(p?), by increasing the number
of particles at the lowest cell. Also, it is possible to apply FFT to the translation [5]
reduceO(p*) scaling toO(p?log p). When these two are combined, the resulting scalir
is O(p+/log p). However, it should be noted that FFT is advantageous only for very lau
values ofp. Even for pretty large values ¢, the gain by FFT does not exceed a factor c
two. In addition, FFT works fine for a non-adaptive variant of FMM, but might not wol
so well for an adaptive version.

2.3. Anderson’s Method

At present, FMM does not offer a clear advantage in performance compared to the tre
gorithms. One of the reasons is that the mathematics used in FMM is much more comple:
thereforeitis more difficult toimplement FMM than to implement the tree algorithm. As a|
sult, relatively small number of implementations exist for FMM. These implementations
not widely used and not very highly optimized. Since FMM is a complex algorithm, the
are many small places which can easily lead to rather large inefficiency. The tree algor
is much simpler and therefore easier to achieve high efficiency.

Anderson [1] proposed an alternative formulation of FMM which is based on Poissc
formula. In two dimensions, the gravitational potential outside a disk of radtasitaining
particles is expressed as

2

_ 2
6(r.0) = GMlogt) + — [ o S)[ 1—(a/r)
2n 0

1—2(a/r)cog8 —s) + (a/r)?

ds, (1)

whereG is the gravitational constany] is the total mass of the particles in the disk, an
(r, 0) is the position in polar coordinate. This formula gives the solution of the bound:
value problem of the Laplace equation.

In order to use formula (1) as a replacement of the multipole expansion, the integral r
be replaced by some numerical quadrature. The “best” method for the numerical integr:
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over a circle is to distribute the points in equal spacing and sum the values on these p
with equal weights. When we us@2- 1 points to sample potential, the integration shoul
give exact values fopth order terms in multipole expansion. Note that itk term in the
multipole expansion corresponds to thi term in the Fourier expansion of the potentia
on the circlep (a, s).

Anderson found that the naive use of the numerical quadrature in combination \
formula (1) gives an unacceptable result. The reason is that a finite number of sam|
pointsintroduces fictitious high-frequency termsin Fourier components. In order to supy
high-frequency terms, we should truncate the multipole expansion atmrithesther words,
formula (1) should be replaced by

2

¢>(r,9)=GMIog(r)+i ¢(a,s)
27'[ 0

1—(a/r)?>—2(a/rM+1cog(M +1)(8 —9)) +2(a/r)M+?cogM 6 — s))] @

1-2(a/r)cog6 —s)+(a/r)?
With this modification, Anderson successfully used Poisson’s formula to implem

FMM. The local expansion can also be given in a similar form.
In three dimensions, the outer and inner expansions are given by

+1
W) = /lZ(an)( > Pa(s - x/Ix)

Y (as)ds, 3

and

V(as)ds. 4)

W) = /lz(znm( ) Pa(s - X/IX)

In actual implementation, the infinite sum must also be truncated at the order of the |
gration scheme used.

In two dimensions, the trapezoidal rule is optimum and is directly related to the Fou
expansion. However, in three dimensions, the way to assign points on a sphere is not ur
Anderson followed the formula given in [11], which claims to have constructed 5th, 7
9th, 11th, and 14th order integration formulae with 12, 24, 32, 50, and 72 points. Rece
Hardin and Sloane [9] suggested a complete set of the achievable orders for integr
schemes with up to 100 points. They called integration schemes which achievetl asde
t-designs. Table | gives a summary of their result. Note tHatraorder scheme§-design)
can express spherical harmonics of the order only up s [1].

For orders 2, 3, and 5, the corresponding distributions of points are the vertices of t
hedron(K = 4), octahedrofK = 6), and icosahedro(K =12).

Blackston and Suel [4] implemented both the classical FMM and Anderson’s met|
and found that for similar accuracy the latter is faster typically by a factor of few.

TABLE |
Number of Points K and Achievable Order D

D 1 2 3 4 5 6 7 8 9 10 11 12 13
K 2 4 6 (12) 12 (24) 24 36 50 60 70 84 94
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The most significant practical advantage of Anderson’s method is the ease of the
plementation. The classical FMM in three dimensions requires rather complex formule
be implemented for the shifting the center of the the multipole expansion (“M2M” pat
translation of the multipole expansion to local expansion (“M2L” part), and shifting tl
center of the local expansion (“L2L" part). In Anderson’s method, all shifting and trans
tions are realized by evaluating the potential on the sample points on the sphere. Tht
mathematics are confined into formulae (4) and (3).

3. PSEUDOPARTICLE MULTIPOLE METHOD

In Anderson’s method, the multipole expansion of the potential due to a clump of parti
is effectively expressed in terms of the values of potentials on a sphere surrounding
particles. The potential outside the sphere is given by the surface integral on that sp
which is then approximated by the sum over sampling points. This method, though eleg
appears to be rather indirect.

An alternative approach would be to use multiple particles to represent the multiy
expansion. The basic idea here is to place small number of pseudoparticles which reprc
the multipole expansion of the original physical particles. In the following, | first prese
the theory in two dimensions, and then that in three dimensions.

3.1. Theory in Two Dimensions

In two dimensions, the multipole expansion of the gravitational field due to one part
is given by

(20/2)"

- ©)

oo
¢0(2) = mlog(z — z0) = mlog(z) —m>
k=1
wherezy andz are the position of the particle and position at which to evaluate the poten
in the complex plane, anoh is the mass of the particle. Here we use the system of un
where the gravitational consta@tis unity. This formula converges fg| > |zo|.
If we haveN particles with masey; at locationsg (17| < a), the potential field outside
the circle of radius is expressed as

¢(2) = Mlog@) — Y_ X (/2" (6)

k=1

whereM is the total mass of particles ang is defined as
N
ok = Z mi(z /@)~ (7
i=1

Our goal is to find an efficient way to plad¢é pseudoparticles to approximate the po
tential field¢. In theory, the total number of freedoms we can attain Wtiparticles is
3K. Therefore, with arbitrary assignment of mass and positoparticles should be able
to represent multipole expansions of uppe- [(3K — 1)/2], where k] denotes the max-
imum integer which does not excegdHowever, in order to determine such an arbitrar
distribution of pseudoparticles, we have to solve the system of nonlinear equations
2p+ 1 variables, and the calculation cost would be at l&&pb®). In addition, it is not
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clear whether or not an acceptable solution exists. In the following, we describe a n
systematic approach in which we do not have to solve nonlinear equations.

In Anderson’s method, potential is calculated at equispaced points on a circle. In
same splits, here we place particles in a ring, and only allow the masses of particle
change. This implies that we use oy out of 3K degrees of freedoms, and we nee
2p+ 1 particles to express the multipole expansion coefficients. However, with this chc
we can determine the mass of thege21 particles withO(p?) or O(plog p) calculation
cost.

Consider the mass distribution of a ring of radiu3 he multipole expansion coefficients
are given by

27
g = (r/a) /O e“p(6) do, (8)

wherep is the line density of mass at polar coordinéted). Thus, from the expansion
coefficientsyy,, m(@) can be calculated by evaluating the Fourier series

1 /a\k& :
pO) = — <) ae . 9)
2m \ r kzzg

When we approximate this continuoansby 2p + 1 discrete points &; =0, 27/(2p+ 1),
4r/(2p+1), ..., m;is given by

Mi = 2p+1< ) Zaelka] (10)

Because of the nature of the Fourier series, tlrasexpress exact values of multipole
expansions up teth order. The potential outside this circle can be calculated as the s
of the potentials by these particles as

2p+1

¢(2) =) _ mjlogz - z), (11)
=1

wherez; =re-217/@2p+D,

In the case of the tree algorithm, we can use Eq. (11) to calculate the gravitati
interaction between a node and a particle.

In the M2M part, which is the same for both the tree algorithm and FMM, we still ha
to construct the multipole expansion or particle representation around the center of a
from those of the child nodes. Since the child nodes are already represented by part
we can use Eg. (7) to obtain the expansion coefficients of the parent node.

Alternatively, we can eliminate the use of the multipole expansion coefficient by cal
lating the mass of pseudoparticles directly from the mass of physical particles (or the r
of the pseudoparticles in child nodes). We can derive the formula to calenjadéectly
from m; by combining Egs. (7) and (10)

p
mJ: szl(zl/zj)k

k0|1

— (7 Sy p+1
2p+1i:l 1-7/z

Sl
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For the tree algorithm, this is the end of the story. In the case of FMM, we still he
to specify the algorithms for the M2L part and L2L part. We can use either Anderso
method or standard harmonic expansion. For local expansion, Anderson’s method is sir
to implement than the spherical harmonics.

3.2. Theory in Three Dimensions

The formulation for three dimensions is essentially the same as that for two dimensi
except that we need to use spherical harmonics insteafl @he expansion coefficients
o" are expressed as

N
o = mirlY "6, ), (13)

i=1
wherem; is the mass of particlé and (rj, 6, ¢;) is its polar coordinate. The function
Y,"(6, ¢) is the spherical harmonics of degfeevhich is expressed as

20 +1( — m)!
47 (I + |m|)!

= (=" P™(cosd)e™m?. (14)

Here,P™ is the associated Legendre function of dedraed ordem. Using thesey", the
potential at positiorir, 6, ¢) is given by

(1,0, ¢) = ZZ .+1\(.m(9 $). (15)

1=0 m=-I

Our goal here is to obtain a mass distributie®, ¢) on a sphere of radiua which
satisfies

o = /S p(6, 9)Y, ™6, $)dS (16)

where S denotes the surface of the sphere. Because the spherical harmonics compri
orthonormal system, thip is expressed as

00 |
p=ZZ (17)

1=0 m=—|

If we useK points on a sphere, their masses are calculated by

M= 4K Z Z oA (18)
1=0 m=-I
The series expansion must be truncated at a finite value as we've seen in the case ¢
dimensions. As discussed by Anderson [1], the cutoff order mugyBg jf K points form
a sphericat-design.

As in the case of two dimensions, we can directly translate the positions and mass
physical particles to that of pseudoparticles. The formal expression is a triple summe
overi,l, andm. However, we can simplify it using the addition theorem of spheric
harmonics. The addition theorem is

4 [
Acosy) = 5 . W00V e 9. (19)
m=—I
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wherey is the angle between two vectors with directiagfis¢) and (9’, ¢’). Using this
addition theoremmn; is expressed as

A1y P

my = = z:; m; I;(ri/r)' P (cosy), (20)

wherey is the angle between the direction of physical partidad pseudoparticlg.
The potential due to physical particles is approximated by the sum of potentials du
these pseudoparticles.

4. NUMERICAL EXAMPLES

Figure 2 shows the decay of the error in two dimensions, for various choices of expan
order and geometry. Here we calculate the absolute error in the potential between
particles. One is located at (1, 0). The other is locate@,&), wherer is varied from 1
to 10 in each panel arti=0, /2, 2 /3, andn for four panels, respectively. As is clearly
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FIG. 2. The absolute error of potential calculated using classical FMM and the pseudoparticle method.
error of the potential by one particle at position (1, 0) is plotted as the function of the distanc&alfd and
dashed curves denote the pseudoparticle method and classical FMM, respectively. In each panel, four curv
the results fop =2, 4, 8, and 16 (top to bottom). Four panels are result for the direction angle O (top tefg, 2
(top right),r/2 (bottom left),x (bottom right), respectively.
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seen, for all cases the new method achieves the theoretical order. Its error is slightly ;
than that of direct evaluation of multipole expansion, but the difference is small.

Note that we could make the result obtained by the new method to be identical to
direct evaluation of multipole expansion, by truncating the pairwise potential to the or
of the integration schemp. However, the result shown in Fig. 2 suggests such truncati
iS unnecessary.

One practical problem is how we chose the radius of the ring. Though the expansic
exact up to ordep, a ring of finite number of particles and finite radius has spurious hig
order multipole moment. Therefore, in order to make the truncation error small, we shc
make the radius as small as possible. On the other hand, as we make the sdalker,
the absolute values of the masses of particles divergePasince this factor directly enters
into the inverse transformation. Therefore, if we makeo small, the round-off error would
increase rapidly. In practice, the choicerct 0.75a makes the spurious high-order terms
sufficiently small, without noticeable effect on the round-off error. For the result showr
Fig. 2 we used = 0.75. The error is not sensitive to the choicerofunless the required
accuracy is very high.

5. DISCUSSIONS

5.1. Relation to Anderson’s Method

Our pseudoparticle method and Anderson’s method are quite similar. Both approxir
the multipole expansion by a function on a circle (two dimensions) or a sphere (tr
dimensions). The difference is that the value of potential is used in Anderson’s method
the mass distribution itself is used in our method.

Both the potential and mass distribution are formally defined by the inverse transf
from the multipole expansion. The only difference lies in the multiplication factor appli
in the inverse transform.

One practical advantage of our method is that the calculation of the M2L part, whicl
known to be the dominant part of the computation, is significantly simpler for our meth
Therefore, the overall calculation speed for the same expansion order would be faste
our method.

In the case of the non-adaptive tree, one can pre-compute the translation matrix fo
M2L part. In this case, the calculation cost of our method and that of Anderson’s methc
essentially the same. In this case, theoretically, both schemes would be slightly slower
the original FMM, since the number of points needed to express expansions up t@orc
is somewhat larger than the number of tergpss+ 1)2.

If we view Anderson’s method as one way of expressing the multipole expansior
seems clear that there is room for improvement in the original formulation by Anders
In the first transform from physical particles to the values of potential on the outer ri
he used the log (or 1/r) potential without truncation. This treatment naturally introduce
fictitious high-frequency terms in the potential on the ring. This is the reason why he ha
carefully choose the radius of the ring to suppress the high-order terms. These high-
terms contaminate the values of the potential itself through aliasing, unless we make
radius of the ring sufficiently large. On the other hand, if we make the radius of the ring
large, the solution inside the ring tends to be quite inaccurate.

If we use the truncated form of the potential for the first conversion, the values of poter
on the ring always represent exact values of the multipole expansion, for any choice o
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radius of the ring. Thus, such a choice should improve the accuracy of Anderson’s me
significantly, without increasing the calculation cost.

In our method, untruncated potential is used in the M2L part. This also introduces
high-order terms which are not in the original multipole expansion. However, this does
cause much degradation in accuracy, since here it is guaranteed that the contribution
high-order terms is small.

5.2. Comparison with the Methods with Better Scaling

Recently, several methods which reduce the cost of the translation of the multipole
pansion fromO(p*) to O(p®) have been proposed [16, 8]. White and Head-Gordon [1
described avery clever transformation, in which they rotate the coordinates so thatthe a
symmetry becomes parallel to the line which connects the two centers of expansion. The
of the rotation iSO (p®), and the translation along the symmetry axis is @%@°). Green-
gard and Rokhlin [8] described a more complex method with theoretically better scalir

Timing results reported [16, 8] indicate that these new methods, like the method desci
in [5], are advantageous only for pretty large valuepoFor example, White and Head-
Gordon [16] reported theaximumspeedup ove® (p*) FMM of a factor of 2.5 forp = 21.
Typical speedup fop =21 was around a factor of two.

In practice, for many problems expansions of order 2 to 8 give sufficient accuracy.
these problems, our method will be competitive with these new methods. Of cours
careful and detailed timing comparison under realistic circumstance will be necessa
draw a firm conclusion.

5.3. Implementation on Special-Purpose Computers

Our group has developed a series of special-purpose computers forlibdy problem
[14, 12]. The basic function of these machines is to evaluate and accumulate the |
itational interaction between particles. Though a modified version of the tree algori
has been implemented on these machines [10], previously only the monopole (effect
dipole) approximation could be used, since the hardware could only calculate the intera
between point particles.

In our pseudoparticle method, the high order expansion is expressed by means of par
which means we can use the special-purpose hardware to evaluate high order expa
Our pseudoparticle method combined with special-purpose hardware will provide a
large speed advantage over FMM or tree algorithms on general-purpose computer.

5.4. Possibility of Using Less Number of Pseudoparticles

As we discussed in Subsection 3.1, the present implementation uses a rather large ni
of particles to represent the multipoles. This is because we put a stringent restriction t
placement of particles: We fix the positions and only vary the mass of particles. This res
tion makes it possible to obtain the mass of particles using linear convolution. However,
is certainly not optimal. For example, it is clear that a monopole can be exactly expresse
one particle, while our method requires two. In the case of gravitational potential, a di
term can also be expressed by one particle placed at the center of mass, while our m
requires four. A quadrupole can be expressed by four particles, while our method req
12. For these low-order expansions, it would be relatively easy to obtain the locatio
particles without actually solving the nonlinear equation.
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For orders higher than 2, the calculation cost of solving the nonlinear equation woul
too high.

6. CONCLUSION

In this paper | presented a new representation of the multipole expansion used in the
algorithm and FMM. In the new method, the gravitational field due to the multipole exp:
sion is approximated by the potential due to a set of pseudoparticles on a ring or a spl

The new method is quite similar to Anderson’s method, which uses the value of potel
itself on a ring. However, compared to Anderson’s original algorithm, the new methot
more accurate for the same number of points.

On a general-purpose computer, the performance of the new method and Ander:
method would be practically the same. However, when combined with special-purf
computers, the new method offers a huge advantage, since the evaluation of the mul
expansion can be done on a hardware which is specialized to the calculation of the interg
of point particles.
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